
State-Machine Reconfiguration:
Past, Present, and the Cloudy Future

Leslie Lamport
Microsoft Research

0

The Forecast: Clouds

In a cloud, computers come and go.

A service provided by a cloud must be continually reconfigured
to change the set of servers.

A service is implemented with a state machine.

I’ll discuss state-machine reconfiguration, and make my own
forecast.

0

The Forecast: Clouds

In a cloud, computers come and go.

A service provided by a cloud must be continually reconfigured
to change the set of servers.

A service is implemented with a state machine.

I’ll discuss state-machine reconfiguration, and make my own
forecast.

0

The Forecast: Clouds

In a cloud, computers come and go.

A service provided by a cloud must be continually reconfigured
to change the set of servers.

A service is implemented with a state machine.

I’ll discuss state-machine reconfiguration, and make my own
forecast.

0

The Forecast: Clouds

In a cloud, computers come and go.

A service provided by a cloud must be continually reconfigured
to change the set of servers.

A service is implemented with a state machine.

I’ll discuss state-machine reconfiguration, and make my own
forecast.

0

The Forecast: Clouds

In a cloud, computers come and go.

A service provided by a cloud must be continually reconfigured
to change the set of servers.

A service is implemented with a state machine.

I’ll discuss state-machine reconfiguration, and make my own
forecast.

0

The Forecast: Clouds

In a cloud, computers come and go.

A service provided by a cloud must be continually reconfigured
to change the set of servers.

A service is implemented with a state machine.

I’ll discuss state-machine reconfiguration, and make my own
forecast.

0

Part I: (More or Less Ancient) History

Those who cannot remember the past are young enough to
enjoy rediscovering it.

1

Part I: (More or Less Ancient) History

Those who cannot remember the past are young enough to
enjoy rediscovering it.

1

Part I: (More or Less Ancient) History

Those who cannot remember the past are young enough to
enjoy rediscovering it.

1

In the Beginning

The Maintenance of Duplicate Databases
by Paul Johnson and Bob Thomas. (1976?)

How to keep consistent copies of a database in a network.

They missed two things:

• Commands not executed in
relativistic
∧causal order.

• It could be used to implement any system.

2

In the Beginning

The Maintenance of Duplicate Databases
by Paul Johnson and Bob Thomas. (1976?)

How to keep consistent copies of a database in a network.

They missed two things:

• Commands not executed in
relativistic
∧causal order.

• It could be used to implement any system.

2

In the Beginning

The Maintenance of Duplicate Databases
by Paul Johnson and Bob Thomas. (1976?)

How to keep consistent copies of a database in a network.

They missed two things:

• Commands not executed in
relativistic
∧causal order.

• It could be used to implement any system.

2

In the Beginning

The Maintenance of Duplicate Databases
by Paul Johnson and Bob Thomas. (1976?)

How to keep consistent copies of a database in a network.

They missed two things:

• Commands not executed in
relativistic
∧causal order.

• It could be used to implement any system.

2

In the Beginning

The Maintenance of Duplicate Databases
by Paul Johnson and Bob Thomas. (1976?)

How to keep consistent copies of a database in a network.

They missed two things:

• Commands not executed in
relativistic
∧causal order.

• It could be used to implement any system.

2

In the Beginning

The Maintenance of Duplicate Databases
by Paul Johnson and Bob Thomas. (1976?)

How to keep consistent copies of a database in a network.

They missed two things:

• Commands not executed in
relativistic
∧causal order.

• It could be used to implement any system.

2

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Time, Clocks and the Ordering of Events in a Distributed
System (1978)

Two contributions:

• The causality partial order on events in a distributed
system.

• Implementing any distributed system by

− Describing it as a state machine, and

− Using a general algorithm for implementing any
state machine.

3

Reaching Agreement in the Presence of Faults
by Marshall Pease, Robert Shostak, and L. L. (1980)

Added (Byzantine) fault tolerance.

Inspired by SIFT (Software Implemented Fault Tolerance):
an architecture for a flight-control computer.

Abstracted the kernel problem: consensus.

State machine implicit in the software structure:
tasks executed iteratively.

4

Reaching Agreement in the Presence of Faults
by Marshall Pease, Robert Shostak, and L. L. (1980)

Added (Byzantine) fault tolerance.

Inspired by SIFT (Software Implemented Fault Tolerance):
an architecture for a flight-control computer.

Abstracted the kernel problem: consensus.

State machine implicit in the software structure:
tasks executed iteratively.

4

Reaching Agreement in the Presence of Faults
by Marshall Pease, Robert Shostak, and L. L. (1980)

Added (Byzantine) fault tolerance.

Inspired by SIFT (Software Implemented Fault Tolerance):
an architecture for a flight-control computer.

Abstracted the kernel problem: consensus.

State machine implicit in the software structure:
tasks executed iteratively.

4

Reaching Agreement in the Presence of Faults
by Marshall Pease, Robert Shostak, and L. L. (1980)

Added (Byzantine) fault tolerance.

Inspired by SIFT (Software Implemented Fault Tolerance):
an architecture for a flight-control computer.

Abstracted the kernel problem: consensus.

State machine implicit in the software structure:
tasks executed iteratively.

4

Reaching Agreement in the Presence of Faults
by Marshall Pease, Robert Shostak, and L. L. (1980)

Added (Byzantine) fault tolerance.

Inspired by SIFT (Software Implemented Fault Tolerance):
an architecture for a flight-control computer.

Abstracted the kernel problem: consensus.

State machine implicit in the software structure:
tasks executed iteratively.

4

Synchronous∗ implementation.

Reconfiguration an important part of the system.

High reliability (mean time to failure of 1M years) depended on
software rapidly identifying faulty processors and removing
them from the system.

One iterative task decided what processors should execute the
next iteration of each task.

∗Assumes known bound on communcication delay.

5

Synchronous∗ implementation.

Reconfiguration an important part of the system.

High reliability (mean time to failure of 1M years) depended on
software rapidly identifying faulty processors and removing
them from the system.

One iterative task decided what processors should execute the
next iteration of each task.

∗Assumes known bound on communcication delay.

5

Synchronous∗ implementation.

Reconfiguration an important part of the system.

High reliability (mean time to failure of 1M years) depended on
software rapidly identifying faulty processors and removing
them from the system.

One iterative task decided what processors should execute the
next iteration of each task.

∗Assumes known bound on communcication delay.

5

Synchronous∗ implementation.

Reconfiguration an important part of the system.

High reliability (mean time to failure of 1M years) depended on
software rapidly identifying faulty processors and removing
them from the system.

One iterative task decided what processors should execute the
next iteration of each task.

∗Assumes known bound on communcication delay.

5

Synchronous∗ implementation.

Reconfiguration an important part of the system.

High reliability (mean time to failure of 1M years) depended on
software rapidly identifying faulty processors and removing
them from the system.

One iterative task decided what processors should execute the
next iteration of each task.

∗Assumes known bound on communcication delay.

5

The Asynchronous Case

Synchronous systems designed for process control.

The systems on our desk are synchronous only most of
the time.

Impossibility of Distributed Consensus with One Faulty Process
by Michael Fischer, Nancy Lynch, and Michael Paterson
(1985)

Showed asynchronous consensus impossible

5

The Asynchronous Case

Synchronous systems designed for process control.

The systems on our desk are synchronous only most of
the time.

Impossibility of Distributed Consensus with One Faulty Process
by Michael Fischer, Nancy Lynch, and Michael Paterson
(1985)

Showed asynchronous consensus impossible

5

The Asynchronous Case

Synchronous systems designed for process control.

The systems on our desk are synchronous only most of
the time.

Impossibility of Distributed Consensus with One Faulty Process
by Michael Fischer, Nancy Lynch, and Michael Paterson
(1985)

Showed asynchronous consensus impossible

5

The Asynchronous Case

Synchronous systems designed for process control.

The systems on our desk are synchronous only most of
the time.

Impossibility of Distributed Consensus with One Faulty Process
by Michael Fischer, Nancy Lynch, and Michael Paterson
(1985)

Showed asynchronous consensus impossible

5

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

For asynchronous systems:

• Always maintain consistency.

• Achieve progress when synchronous.

Asynchronous consensus:

Consensus in the Presence of Partial Synchrony
by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer
(1988)

A state-machine implementation (Paxos)

Viewstamped Replication for Highly Available Distributed
Systems by Brian Oki (1988)

The Part-Time Parliament (1989)

6

Making Paxos tolerate Byzantine faults:

Practical Byzantine Fault Tolerance
by Miguel Castro and Barbara Liskov (1999)

7

Making Paxos tolerate Byzantine faults:

Practical Byzantine Fault Tolerance
by Miguel Castro and Barbara Liskov (1999)

7

State Machines

A state machine is a mapping:

〈Command ,OldState 〉 → 〈Response,NewState 〉

You can represent
almost
∧any system as a state machine.

7

State Machines

A state machine is a mapping:

〈Command ,OldState 〉 → 〈Response,NewState 〉

You can represent
almost
∧any system as a state machine.

7

State Machines

A state machine is a mapping:

〈Command ,OldState 〉 → 〈Response,NewState 〉

You can represent
almost
∧any system as a state machine.

7

State Machines

A state machine is a mapping:

〈Command ,OldState 〉 → 〈Response,NewState 〉

You can represent
almost
∧any system as a state machine.

7

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Deposit $20 to Alice’s account.

Response: “OK”

NewState = Oldstate with $20 added to Alice’s account

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Deposit $20 to Alice’s account.

Response: “OK”

NewState = Oldstate with $20 added to Alice’s account

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Deposit $20 to Alice’s account.

Response: “OK”

NewState = Oldstate with $20 added to Alice’s account

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Deposit $20 to Alice’s account.

Response: “OK”

NewState = Oldstate with $20 added to Alice’s account

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Deposit $20 to Alice’s account.

Response: “OK”

NewState = Oldstate with $20 added to Alice’s account

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Withdraw $100 from Bob’s account.

Response: “Insufficient Funds”

NewState = Oldstate

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Withdraw $100 from Bob’s account.

Response: “Insufficient Funds”

NewState = Oldstate

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Withdraw $100 from Bob’s account.

Response: “Insufficient Funds”

NewState = Oldstate

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Transfer $100 from Alice’s account

to Bob’s account.

Response: To Alice: “Done”
To Bob: “$100 received from Alice”

NewState = Oldstate with $100 removed from

Alice’s account and added to Bob’s

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Transfer $100 from Alice’s account

to Bob’s account.

Response: To Alice: “Done”
To Bob: “$100 received from Alice”

NewState = Oldstate with $100 removed from

Alice’s account and added to Bob’s

8

An example: A Toy Banking System

State: The balance of each depositor’s account

Command : Transfer $100 from Alice’s account

to Bob’s account.

Response: To Alice: “Done”
To Bob: “$100 received from Alice”

NewState = Oldstate with $100 removed from

Alice’s account and added to Bob’s

8

A Possible State-Machine Command

if (k <= 3) {
int start = GF_256_ANTILOG (0);
int factor = GF_256_ANTILOG (1);
for (i = 0; i != k; i++) {

int j;
int colentry = GF_256_ANTILOG (0);
int colfactor = start;
for (j = 0; j != m; j++) {

rs->matrix[i*m + j] = GF_256_LOG (colentry);
colentry = GF_256_MUL (colentry, colfactor); }

start = GF_256_MUL (start, factor); }
} else {int start = GF_256_ANTILOG (0);

int factor = GF_256_ANTILOG (1);
...

It just has to be deterministic.

9

A Possible State-Machine Command

if (k <= 3) {
int start = GF_256_ANTILOG (0);
int factor = GF_256_ANTILOG (1);
for (i = 0; i != k; i++) {

int j;
int colentry = GF_256_ANTILOG (0);
int colfactor = start;
for (j = 0; j != m; j++) {

rs->matrix[i*m + j] = GF_256_LOG (colentry);
colentry = GF_256_MUL (colentry, colfactor); }

start = GF_256_MUL (start, factor); }
} else {int start = GF_256_ANTILOG (0);

int factor = GF_256_ANTILOG (1);
...

It just has to be deterministic.

9

• Implementing any distributed system by

− Describing it as a state machine

− Using a general algorithm for implementing any
state machine.

10

• Implementing any distributed system by

− Describing it as a state machine

− Using a general algorithm for implementing any
state machine.

No concurrency/distribution.

10

• Implementing any distributed system by

− Describing it as a state machine

− Using a general algorithm for implementing any
state machine.

10

• Implementing any distributed system by

− Describing it as a state machine

− Using a general algorithm for implementing any
state machine.

Just implement once.

10

• Implementing any distributed system by

− Describing it as a state machine

− Using a general algorithm for implementing any
state machine.

Just implement once. (Middleware)

10

A Typical Non-Byzantine State-Machine Implementation

10

A Typical Non-Byzantine State-Machine Implementation

��
��
S1

��
��
S2

��
��
S3

The servers.

10

A Typical Non-Byzantine State-Machine Implementation

��
��
S1

��
��
S2

��
��
S3

The servers. To tolerate 1 failure, need 3 servers.

10

A Typical Non-Byzantine State-Machine Implementation

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

The clients.

10

A Typical Non-Byzantine State-Machine Implementation

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

One server chosen to be leader.

10

A Typical State-Machine Implementation

Chosen Commands

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

11

A Typical State-Machine Implementation

B1-

Chosen Commands

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Bob sends command B1 to leader.

11

A Typical State-Machine Implementation

1:B1 1:B1- -

Chosen Commands

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Leader assigns number 1 to command and sends to servers.

11

A Typical State-Machine Implementation

1:B1 1:B1

� �

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Servers remember 1:B1 and ack.

11

A Typical State-Machine Implementation

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Server knows B1 chosen as command 1.

11

A Typical State-Machine Implementation

response�

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Sends response obtained by executing B1

11

A Typical State-Machine Implementation

response�

1:B1 chosen 1:B1 chosen- -

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Sends response obtained by executing B1
and notifies servers that 1:B1 chosen.

11

A Typical State-Machine Implementation

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

From now on, I will ignore responses to clients
and notification of servers

11

A Typical State-Machine Implementation

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

12

A Typical State-Machine Implementation

B2-

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Bob issues command B2.

12

A Typical State-Machine Implementation

B2-

A1 -

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Alice issues command A1.

12

A Typical State-Machine Implementation

B2-

2:A1 2:A1- -

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Leader assigns command number 2 to A1 and sends to
servers.

12

A Typical State-Machine Implementation

3:B2
2:A1

3:B2
2:A1- -

Chosen Commands
1: B1

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Leader assigns command number 3 to B2 and sends to
servers.

12

A Typical State-Machine Implementation

2:A1
3:B2

2:A1- -

Chosen Commands
1: B1
2:

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

S3 receives 3:B2.

12

A Typical State-Machine Implementation

2:A1
3:B2

2:A1- -

�

3:B2

Chosen Commands
1: B1
2:

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

S3 acks 3:B2.

12

A Typical State-Machine Implementation

2:A1
3:B2

2:A1- -

Chosen Commands
1: B1
2:
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Leader receives 3:B2 and knows it is chosen.

12

A Typical State-Machine Implementation

2:A1

�

2:A1
3:B2

- -

Chosen Commands
1: B1
2:
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

S1 receives 2:A1 and acks it.

13

A Typical State-Machine Implementation

2:A1
3:B2

- -

Chosen Commands
1: B1
2:
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Leader receives ack and knows A1 chosen as command 2.

13

A Typical State-Machine Implementation

2:A1
3:B2

- -

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

13

A Typical State-Machine Implementation

2:A1
3:B2

- -

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

The remaining messages are redundant.
They will be acked if received, but acks are ignored.
1-fault tolerance means leader needs only 1 ack.

13

A Typical State-Machine Implementation

2:A1
3:B2

- -

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

The remaining messages are redundant.
They will be acked if received, but acks are ignored.
1-fault tolerance means leader needs only 1 ack.

13

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

The remaining messages are redundant.
They will be acked if received, but acks are ignored.
1-fault tolerance means leader needs only 1 ack.

13

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Suppose S2 fails.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

A new leader is chosen.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-�

New leader learns what other servers have done.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

System can new resume normal operation.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4:

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan
���

D1

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4:

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-4:D1

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4:

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

�4:D1

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4:

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

The system can no longer tolerate the failure of a server.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

To restore 1-fault tolerance, must reconfigure —
to replace S2 with a new server.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

To restore 1-fault tolerance, must reconfigure —
to replace S2 with a new server.

14

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Make the configuration part of the state.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Make the configuration part of the state.
Command n chosen by configuration after command n − 1.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

�
S2↓ S4↑

S3, acting as a client, issues a reconfiguration command
to change the configuration by removing S2 and adding S4.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

�
S2↓ S4↑

This is treated like an ordinary command.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-5:S2↓ S4↑

This is treated like an ordinary command.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

�5:S2↓ S4↑

This is treated like an ordinary command.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

This is treated like an ordinary command.

15

A Typical State-Machine Implementation

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Commands starting from number 6 chosen by S1, S3, and S4.

15

A Problem

15

A Problem

2:A1
3:B2

2:A1- -

Chosen Commands
1: B1
2:
3: B2

�

3:B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

What if command 2 were a reconfiguration command that
removed S3?

We have to wait until command 2 is chosen before we can start
choosing command 3.

16

A Problem

2:A1
3:B2

2:A1- -

Chosen Commands
1: B1
2:
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Leader receives 3:B2 from S3 and knows it is chosen. What if
command 2 were a reconfiguration command that removed
S3?

We have to wait until command 2 is chosen before we can start
choosing command 3. 16

A Problem

2:A1
3:B2

2:A1- -

Chosen Commands
1: B1
2:
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

What if command 2 were a reconfiguration command that
removed S3?

We have to wait until command 2 is chosen before we can start
choosing command 3.

16

A Problem

2:A1
3:B2

2:A1- -

Chosen Commands
1: B1
2:
3: B2

��
��
S1

��
��
S2

��
��
S3

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

What if command 2 were a reconfiguration command that
removed S3?

We have to wait until command 2 is chosen before we can start
choosing command 3.

16

A Solution

16

A Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Commands starting from number 6
5+α

chosen by S1, S3, and S4.

17

A Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Commands starting from number 6
5+α

chosen by S1, S3, and S4.

17

A Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Make the configuration part of the state.
Command n chosen by configuration after command n − 1.

17

A Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Make the configuration part of the state.
Command n chosen by configuration after command n − α.

17

Problem

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Commands starting from number 5+α chosen by S1, S3, and S4.

Must choose next α−1 commands before reconfiguration takes
effect.

17

Problem

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Commands starting from number 5+α chosen by S1, S3, and S4.

Must choose next α−1 commands before reconfiguration takes
effect.

17

Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Immediately choose α−1 no-op commands

18

Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Immediately choose α−1 no-op commands

18

Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Immediately choose α−1 no-op commands

No problem letting α = 232.

18

Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Immediately choose α−1 no-op commands

No problem letting α = 232.
All chosen with same messages as reconfiguration command.

18

Solution

Chosen Commands
1: B1
2: A1
3: B2
4: D1
5: S2↓ S4↑

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Immediately choose α−1 no-op commands

No problem letting α =∞
command number = 〈epoch number ,number〉

18

What About Byzantine Failures?

The only problem: a malicious node could propose a bad
reconfiguration.

The solution: define the state machine so enough nodes must
agree to a reconfiguration for it to take effect.

18

What About Byzantine Failures?

The only problem: a malicious node could propose a bad
reconfiguration.

The solution: define the state machine so enough nodes must
agree to a reconfiguration for it to take effect.

18

What About Byzantine Failures?

The only problem: a malicious node could propose a bad
reconfiguration.

The solution: define the state machine so enough nodes must
agree to a reconfiguration for it to take effect.

18

Part IIa: The Present: Vertical Paxos

Joint work with Dahlia Malkhi and Lidong Zhou.

For non-Byzantine Failures.

19

Part IIa: The Present: Vertical Paxos

Joint work with Dahlia Malkhi and Lidong Zhou.

For non-Byzantine Failures.

19

Part IIa: The Present: Vertical Paxos

Joint work with Dahlia Malkhi and Lidong Zhou.

For non-Byzantine Failures.

19

A Closer Look at Paxos

19

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

(α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Each ballot number used by at most one leader. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S2 proposes B1 in ballot 2 of command 1. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

B1 chosen in ballot 2 of command 1. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S2 proposes A1 in ballot 2 of command 2. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S2 proposes B2 in ballot 2 of command 3. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

B2 chosen in ballot 2 of command 3. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

A1 chosen in ballot 2 of command 2. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S2 proposes C1 in ballot 2 of command 4. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S2 fails. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S3 elected leader and chooses ballot 3. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S3 proposes D1 in ballot 3 of command 4. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

D1 chosen in ballot 3 of command 4. (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S3 proposes S2↓ S4↑ in ballot 3 of command 5 (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

S3 proposes S2↓ S4↑ in ballot 3 of command 5
and no-op in ballot 3 of commands 6 and 7 (α = 3) (α = 3)

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Commands number 5–7 chosen. (α = 3)

21

New
Configuration

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

New configuration takes effect with command number 8. (α = 3)

21

New
Configuration

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

New configuration takes effect with command number 8. (α = 3)

21

New
Configuration

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

New configuration takes effect with command number 8. (α = 3)

Horizontal Reconfiguration.

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Vertical Reconfiguration
– No state-machine reconfiguration commands.
– Each ballot number uses its own configuration.

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Vertical Reconfiguration
– No state-machine reconfiguration commands.
– Each ballot number uses its own configuration.

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Vertical Reconfiguration
– No state-machine reconfiguration commands.
– Each ballot number uses its own configuration.

21

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Vertical Reconfiguration
– No state-machine reconfiguration commands.
– Each ballot number uses its own configuration.

21

Configuration 3

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Vertical Reconfiguration
– No state-machine reconfiguration commands.
– Each ballot number uses its own configuration.

21

Configuration 3

Configuration 4

ballot
number

...
6

5

4

3 D1 S2↓ S4↑ no-op no-op

2 B1 A1 B2 C1

1
1 2 3 4 5 6 7 8 . . .

command number

Vertical Reconfiguration
– No state-machine reconfiguration commands.
– Each ballot number uses its own configuration.

21

How It’s Done

��
��
S1

��
��
S2

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

22

How It’s Done

Deus Ex
State Machine

��
��
S1

��
��
S2

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Get external help.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Assume a reliable reconfiguration service.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Suppose S2 fails.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�1

S3 asks to be new leader of configuration S3, S1, S4.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�

)

Told to try with ballot number 3.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-�

-

�

S3 ends ballot 2 and starts ballot 3.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�1

S3 reports that it has successfully started ballot 3.

22

How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�

)

Told to resume normal operation of ballot 3.

22

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

Where Do We Get a Reconfiguration Service?

Modern data centers have 10s – 1000s of computers.

Many different state machines being run by many different
computers.

The Reconfiguration Service does nothing most of the time.
It’s needed only when there’s a failure.

Run the Reconfiguration Service as a reliable state machine
(with horizontal reconfiguration).

It can handle lots of different state machines and provide other
services as well.

23

What’s Going On Here?

Reconfiguration
Service

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-�

-

�

S3 ends ballot 2 and starts ballot 3.

23

What’s Going On Here?

Reconfiguration
Service

��
��
S1��

��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-�

-

�

S3 ends ballot 2 and starts ballot 3.

23

More About How Paxos Chooses Each Single Command

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

24

More About How Paxos Chooses Each Single Command

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

24

More About How Paxos Chooses Each Single Command

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

24

More About How Paxos Chooses Each Single Command

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

24

More About How Paxos Chooses Each Single Command

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

24

More About How Paxos Chooses Each Single Command

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

24

More About How Paxos Chooses Each Single Command

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

24

More About How Paxos Chooses Each Single Command

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

24

More About How Paxos Chooses Each Single Command

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

24

Done simultaneously for all command numbers.

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

25

Done simultaneously for all command numbers.

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

25

Done one command number at a time.

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

25

Observation: Can use different servers in different ballots.

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

27

Hence, can reconfigure when starting a new ballot.

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

27

Problem: removing reliance on ancient configurations.

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

27

Problem: removing reliance on ancient configurations.

A new leader starts ballot b by contacting a majority of servers

in all previous ballots

contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it proposes in ballot b the next command it receives
from a client.

27

The Solution

A new leader starts ballot b by contacting a majority of servers
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it
tells ballot-b servers that all values are safe; later it

∧proposes in ballot b the next command it receives
from a client.

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it
tells ballot-b servers that all values are safe; later it

∧proposes in ballot b the next command it receives
from a client.

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it
tells ballot-b servers that all values are safe; later it

∧proposes in ballot b the next command it receives
from a client.

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it
tells ballot-b servers that all values are safe; later it

∧proposes in ballot b the next command it receives
from a client.

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it
tells ballot-b servers that all values are safe; later it

∧

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it tells ballot-b servers that all values are safe.

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it tells ballot-b servers that all values are safe.

This is what a new leader does—simultaneously for all
command numbers.

27

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In case (i), it proposes (tells servers to vote for) C in ballot b.

In case (ii), it tells ballot-b servers that all values are safe.

This is what a new leader does—simultaneously for all
command numbers.

It then tells the reconfiguration service that it has successfully
started ballot b.

27

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Suppose S2 fails.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�1

S3 asks to be new leader of configuration S3, S1, S4.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�

)

Told to try with ballot number 3.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

-�

-

�

S3 ends ballot 2 and starts ballot 3.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

S3 ends ballot 2 and starts ballot 3.

This is the processing at the beginning of ballot 3.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�1

S3 reports that it has successfully started ballot 3.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

��
��

��
��

��
��
�

)

Told to resume normal operation of ballot 3.

28

Remember How It’s Done

Reconfiguration
Service

��
��
S1

��
��
S2
�
�
�

@
@
@

��
��
S3

��
��
S4

�
 �	Alice

�
 �	Bob

�
 �	Celia

�
 �	Dan

Told to resume normal operation of ballot 3.

S3 now proposes new client commands.

28

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

28

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a

read quorum
majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.
Requirement: write quorum ∩

{
read
write

}
quorum 6= φ

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a

read quorum
majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Does little when the same configuration used for all ballots.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a

read quorum
majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Does little when the same configuration used for all ballots.

Useful with vertical reconfiguration.

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a

read quorum
majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Most interesting case:
write quorum = set of all servers
read quorum = any single server

Observations:
1. All commands are safe at 0.
2. C is safe at b iff C is safe at b−1 and a

read quorum
majority of servers

will never vote for any command except (perhaps) C in
ballot b − 1.

3. Different commands cannot be chosen in different ballots
if a server votes in ballot b only for a command safe at b.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Most interesting case:
write quorum = set of all servers
read quorum = any single server

Useless for ordinary Paxos because cannot choose any
command if one server fails.

Not a problem with vertical reconfiguration.

29

A Generalization of Ordinary Paxos (De Prisco & Lynch, 1997)

A command C is chosen at ballot b iff a
write quorum

majority of servers vote
for C in ballot b.

C is safe at ballot b iff no command except (perhaps) C can
ever be chosen at a ballot < b.

Most interesting case:
write quorum = set of all servers
read quorum = any single server

Useless for ordinary Paxos because cannot choose any
command if one server fails.

Not a problem with vertical reconfiguration.

29

The Solution

A new leader starts ballot b by contacting a majority of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

30

The Solution

A new leader starts ballot b by contacting a majority
read quorum

of
ballot b − 1
∧servers

and learning either
(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

30

The Solution

A new leader starts ballot b by contacting any ballot b−1 server
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

30

The Solution

A new leader starts ballot b by contacting any ballot b−1 server
and learning either

(i) some (previously proposed) command C is safe at b, or
(ii) all commands are safe at b.

In most cases, the new leader will be a ballot b − 1 server,
so it need contact only itself.

30

Part IIb: The Present: Primary-Backup

30

Tolerating f Failures

To make data survive f failures, you need only f + 1 copies.

Primary-backup approach:

– Use a primary and f backups.

– If the primary fails, make a backup the new primary.

A popular approach (e.g., Tandem).

31

Tolerating f Failures

To make data survive f failures, you need only f + 1 copies.

Primary-backup approach:

– Use a primary and f backups.

– If the primary fails, make a backup the new primary.

A popular approach (e.g., Tandem).

31

Tolerating f Failures

To make data survive f failures, you need only f + 1 copies.

Primary-backup approach:

– Use a primary and f backups.

– If the primary fails, make a backup the new primary.

A popular approach (e.g., Tandem).

31

Tolerating f Failures

To make data survive f failures, you need only f + 1 copies.

Primary-backup approach:

– Use a primary and f backups.

– If the primary fails, make a backup the new primary.

A popular approach (e.g., Tandem).

31

Tolerating f Failures

To make data survive f failures, you need only f + 1 copies.

Primary-backup approach:

– Use a primary and f backups.

– If the primary fails, make a backup the new primary.

A popular approach (e.g., Tandem).

31

Tolerating f Failures

To make data survive f failures, you need only f + 1 copies.

Primary-backup approach:

– Use a primary and f backups.

– If the primary fails, make a backup the new primary.

A popular approach (e.g., Tandem).

31

Tolerating f Failures

But consensus requires 2f + 1 processes to tolerate f faults.

With a primary backup system, the backup cannot tell the
difference between

"!

backup"!

primary -�

and

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

31

Tolerating f Failures

But consensus requires 2f + 1 processes to tolerate f faults.

With a primary backup system, the backup cannot tell the
difference between

"!

backup"!

primary -�

and

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

31

Tolerating f Failures

But consensus requires 2f + 1 processes to tolerate f faults.

With a primary backup system, the backup cannot tell the
difference between

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

and

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

31

Tolerating f Failures

But consensus requires 2f + 1 processes to tolerate f faults.

With a primary backup system, the backup cannot tell the
difference between

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

and

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

31

Tolerating f Failures

Requires an extra “witness” process.

"!

witness

"!

backup"!

primary -�

�
�
�
�7

/ S
S
S
So

w

The “witness” need not maintain the system state.

It just votes, not even caring what commands are chosen.

31

Tolerating f Failures

Requires an extra “witness” process.

"!

witness

"!

backup"!

primary -�

�
�
�
�7

/ S
S
S
So

w

The “witness” need not maintain the system state.

It just votes, not even caring what commands are chosen.

31

Tolerating f Failures

Requires an extra “witness” process.

"!

witness

"!

backup"!

primary -�

�
�
�
�7

/ S
S
S
So

w

The “witness” need not maintain the system state.

It just votes, not even caring what commands are chosen.

31

How Primary-Backup Systems Work

• Make assumptions (often implicit) about types of failures.

Usually assume this can’t happen:

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

• Rely on an external service (possibly human), using an
ad hoc algorithm (also known as code).

Just like the reconfiguration service of Vertical Paxos.

32

How Primary-Backup Systems Work

• Make assumptions (often implicit) about types of failures.

Usually assume this can’t happen:

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

• Rely on an external service (possibly human), using an
ad hoc algorithm (also known as code).

Just like the reconfiguration service of Vertical Paxos.

32

How Primary-Backup Systems Work

• Make assumptions (often implicit) about types of failures.

Usually assume this can’t happen:

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

• Rely on an external service (possibly human), using an
ad hoc algorithm (also known as code).

Just like the reconfiguration service of Vertical Paxos.

32

How Primary-Backup Systems Work

• Make assumptions (often implicit) about types of failures.

Usually assume this can’t happen:

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

• Rely on an external service (possibly human), using an
ad hoc algorithm (also known as code).

Just like the reconfiguration service of Vertical Paxos.

32

How Primary-Backup Systems Work

• Make assumptions (often implicit) about types of failures.

Usually assume this can’t happen:

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

• Rely on an external service (possibly human), using an
ad hoc algorithm (also known as code).

Just like the reconfiguration service of Vertical Paxos.

32

How Primary-Backup Systems Work

• Make assumptions (often implicit) about types of failures.

Usually assume this can’t happen:

"!

backup"!

primary -�

�
�
�
�

@
@

@
@

• Rely on an external service (possibly human), using an
ad hoc algorithm (also known as code).

Just like the reconfiguration service of Vertical Paxos.

32

How Primary-Backup Systems Work

Vertical Paxos provides a rigorous primary-backup algorithm.

With proof.

Vertical Paxos and Primary-Backup Replication
by Leslie Lamport, Dahlia Malkhi, and Lidong Zhou

Rejected by PODC 2009

Appeared as a short announcement at PODC 2009

Available on my publications page, accessible from
http://lamport.org

32

How Primary-Backup Systems Work

Vertical Paxos provides a rigorous primary-backup algorithm.

With proof.

Vertical Paxos and Primary-Backup Replication
by Leslie Lamport, Dahlia Malkhi, and Lidong Zhou

Rejected by PODC 2009

Appeared as a short announcement at PODC 2009

Available on my publications page, accessible from
http://lamport.org

32

How Primary-Backup Systems Work

Vertical Paxos provides a rigorous primary-backup algorithm.

With proof.

Vertical Paxos and Primary-Backup Replication
by Leslie Lamport, Dahlia Malkhi, and Lidong Zhou

Rejected by PODC 2009

Appeared as a short announcement at PODC 2009

Available on my publications page, accessible from
http://lamport.org

32

How Primary-Backup Systems Work

Vertical Paxos provides a rigorous primary-backup algorithm.

With proof.

Vertical Paxos and Primary-Backup Replication
by Leslie Lamport, Dahlia Malkhi, and Lidong Zhou

Rejected by PODC 2009

Appeared as a short announcement at PODC 2009

Available on my publications page, accessible from
http://lamport.org

32

How Primary-Backup Systems Work

Vertical Paxos provides a rigorous primary-backup algorithm.

With proof.

Vertical Paxos and Primary-Backup Replication
by Leslie Lamport, Dahlia Malkhi, and Lidong Zhou

Rejected by PODC 2009

Appeared as a short announcement at PODC 2009

Available on my publications page, accessible from
http://lamport.org

32

How Primary-Backup Systems Work

Vertical Paxos provides a rigorous primary-backup algorithm.

With proof.

Vertical Paxos and Primary-Backup Replication
by Leslie Lamport, Dahlia Malkhi, and Lidong Zhou

Rejected by PODC 2009

Appeared as a short announcement at PODC 2009

Available on my publications page, accessible from
http://lamport.org

32

What About Byzantine Failures?

Vertical Paxos should generalize the same way ordinary
Paxos does.

Should need an extra f processes everywhere, so
primary-backup requires 2f + 1.

A PhD thesis topic?

33

What About Byzantine Failures?

Vertical Paxos should generalize the same way ordinary
Paxos does.

Should need an extra f processes everywhere, so
primary-backup requires 2f + 1.

A PhD thesis topic?

33

What About Byzantine Failures?

Vertical Paxos should generalize the same way ordinary
Paxos does.

Should need an extra f processes everywhere, so
primary-backup requires 2f + 1.

A PhD thesis topic?

33

What About Byzantine Failures?

Vertical Paxos should generalize the same way ordinary
Paxos does.

Should need an extra f processes everywhere, so
primary-backup requires 2f + 1.

A PhD thesis topic?

33

Part III: The Cloudy Future

• 1000s of machines, not just 10s.

• Have to find the state machine.

• Initial configuration, not just reconfiguration.

33

Part III: The Cloudy Future

• 1000s of machines, not just 10s.

• Have to find the state machine.

• Initial configuration, not just reconfiguration.

33

Part III: The Cloudy Future

• 1000s of machines, not just 10s.

• Have to find the state machine.

• Initial configuration, not just reconfiguration.

33

Part III: The Cloudy Future

• 1000s of machines, not just 10s.

• Have to find the state machine.

• Initial configuration, not just reconfiguration.

33

1000s of machines

Use 10s of them to execute the state machine.

The rest are just clients.

Will this really work with malicious nodes?

We won’t know until someone builds it and finds out what the
engineering problems are.

34

1000s of machines

Use 10s of them to execute the state machine.

The rest are just clients.

Will this really work with malicious nodes?

We won’t know until someone builds it and finds out what the
engineering problems are.

34

1000s of machines

Use 10s of them to execute the state machine.

The rest are just clients.

Will this really work with malicious nodes?

We won’t know until someone builds it and finds out what the
engineering problems are.

34

1000s of machines

Use 10s of them to execute the state machine.

The rest are just clients.

Will this really work with malicious nodes?

We won’t know until someone builds it and finds out what the
engineering problems are.

34

1000s of machines

Use 10s of them to execute the state machine.

The rest are just clients.

Will this really work with malicious nodes?

We won’t know until someone builds it and finds out what the
engineering problems are.

34

The problem of a malicious leader

The weak point of Byzantine Paxos

Will it really work?

34

The problem of a malicious leader

The weak point of Byzantine Paxos

Will it really work?

34

The problem of a malicious leader

The weak point of Byzantine Paxos

Will it really work?

34

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Eliminating the Leader

Fatemeh Borran and André Schiper DISC 2009

L.L. unpublished 2006

− Implement a virtual leader as a state machine,
− using synchronous Byzantine agreement.

− Loss of synchrony can lead to failure of agreement.

− But agreement failure just leads to malicious a leader,
− which affects only progress in Byzantine Paxos.

35

Finding the state machine.

In theory, can flood the network with queries.

In practice, there are engineering solutions–e.g., DNS.

They use a trusted central service.

Why not use a trusted central registration & reconfiguration
service?

36

Finding the state machine.

In theory, can flood the network with queries.

In practice, there are engineering solutions–e.g., DNS.

They use a trusted central service.

Why not use a trusted central registration & reconfiguration
service?

36

Finding the state machine.

In theory, can flood the network with queries.

In practice, there are engineering solutions–e.g., DNS.

They use a trusted central service.

Why not use a trusted central registration & reconfiguration
service?

36

Finding the state machine.

In theory, can flood the network with queries.

In practice, there are engineering solutions–e.g., DNS.

They use a trusted central service.

Why not use a trusted central registration & reconfiguration
service?

36

Finding the state machine.

In theory, can flood the network with queries.

In practice, there are engineering solutions–e.g., DNS.

They use a trusted central service.

Why not use a trusted central registration & reconfiguration
service?

36

Initial configuration

It’s easy for any process to try starting up a state machine with
its friends.

It or a friend may not know if the start-up succeeded, but it can
search for the state machine.

Why not just use a trusted central registration &
(re)configuration service?

37

Initial configuration

It’s easy for any process to try starting up a state machine with
its friends.

It or a friend may not know if the start-up succeeded, but it can
search for the state machine.

Why not just use a trusted central registration &
(re)configuration service?

37

Initial configuration

It’s easy for any process to try starting up a state machine with
its friends.

It or a friend may not know if the start-up succeeded, but it can
search for the state machine.

Why not just use a trusted central registration &
(re)configuration service?

37

Initial configuration

It’s easy for any process to try starting up a state machine with
its friends.

It or a friend may not know if the start-up succeeded, but it can
search for the state machine.

Why not just use a trusted central registration &
(re)configuration service?

37

Initial configuration

It’s easy for any process to try starting up a state machine with
its friends.

It or a friend may not know if the start-up succeeded, but it can
search for the state machine.

Why not just use a trusted central registration &
(re)configuration service?

37

My Forecast: Clouds, but not so nebulous

People are not going to rely on systems that form
spontaneously from vapor.

Computing “clouds” will use trusted central services for finding,
starting, and possibly reconfiguring services.

Those trusted services may be provided by Microsoft, Google,
the U.N., . . .

We have lots of ideas about how to build those trusted services.

38

My Forecast: Clouds, but not so nebulous

People are not going to rely on systems that form
spontaneously from vapor.

Computing “clouds” will use trusted central services for finding,
starting, and possibly reconfiguring services.

Those trusted services may be provided by Microsoft, Google,
the U.N., . . .

We have lots of ideas about how to build those trusted services.

38

My Forecast: Clouds, but not so nebulous

People are not going to rely on systems that form
spontaneously from vapor.

Computing “clouds” will use trusted central services for finding,
starting, and possibly reconfiguring services.

Those trusted services may be provided by Microsoft, Google,
the U.N., . . .

We have lots of ideas about how to build those trusted services.

38

My Forecast: Clouds, but not so nebulous

People are not going to rely on systems that form
spontaneously from vapor.

Computing “clouds” will use trusted central services for finding,
starting, and possibly reconfiguring services.

Those trusted services may be provided by Microsoft, Google,
the U.N., . . .

We have lots of ideas about how to build those trusted services.

38

My Forecast: Clouds, but not so nebulous

People are not going to rely on systems that form
spontaneously from vapor.

Computing “clouds” will use trusted central services for finding,
starting, and possibly reconfiguring services.

Those trusted services may be provided by Microsoft, Google,
the U.N., . . .

We have lots of ideas about how to build those trusted services.

38

THANK YOU

38

